Α Εξάμηνο ΠΜΣ (ΤEΠ-AKE)

Calculus

Module Code Semester Type Hours Laboratories / Seminars   ECTS Instructors
Calculus ΜΘ100 1 Compulsory 4
6
Vlamos P.
Description:
Basic Sets, Real Numbers – Axioms of Real numbers – Euclidean spaces, Sequences, Monotony, Subsequence, Convergence, Numerical Series, Convergence Criteria: Absolute and Relative Convergence, Telescopic Series, Limit, Continuity, Derivative, Basic Theorems of Differential Calculus, Convexity, Taylor Theorem, Taylor Series, Power series, Integral, Beta and Gamma Functions, Applications of Integrals, Differential Equations, Functions of several Variables,  Limit and Continuity – Partial Derivative, Extrema, Completion, Multiple Integration, Change of Variables, Fourier Theory, FFT.

Bibliography:
  1. Calculus, Volume I, Finney, Weir, Giordano, Crete University Press 2006.
  2. Vector Calculus, J. Marden and A. Tromba, University of Crete
  3. CALCULUS, VOLUME II, FINNEY RL, WEIR MD, GIORDANO FR, University of Crete
  4. R. Courant and F. John, Introduction to Calculus and Analysis, Vol. II / 1, 1999
  5. Differential and Integral Calculus, Spivak, M. (1991), 2nd edition, Crete University Press
  6. Calculus, Finney R.L., Weir M.D., and Giordano F.R. (2004). Volume I, University of Crete
  7. Calculus, Apostol, T. M. ,(1967), Vol.1, 2nd edition, Wiley.
  8. A First Course in Calculus, Lang, S. (1986) 5th edition, (Undergraduate Texts in Mathematics) Springer Verlag.
  9. Calculus with Analytic Geometry: A First Course, Protter, M. H. and Morrey, C. B. (1977). Addison-Wesley Inc.
  10. Calculus, Spivak, M. (1994), 3rd edition, Publish or Perish Press
  11. Advanced Mathematics, Elijah Cup, Publications A. Stamoulis, 1993
  12. Differential and Integral Calculus, Tom Apostol, Volume I and II, Atlantis Publishing, 1962
Additional material:

Log In

Create an account