Uncategorized

Data Mining and Knowledge Management

Module Code Semester Specialisation IT-IS Specialisation IT-ΗΙ ECTS Instructor(s)
Data Mining and Knowledge Management    2 Elective Elective Specialisation 6 Mylonas Ph.
 
Module Description:
Learning approaches: Meta learning, Basic mining techniques: k-means, DBSCAN, SVMs, Naive Bayes, Genetic algorithms, RANSAC, Pattern Recognition, Neural Networks, Spatial & Temporal Mining, Data ambiguity, Multi-label learning, Data Warehouses, Online analytical processing (OLAP), time series, algorithm efficiency, Data pre-processing, visualization,  Feature & attributes selection, curse of dimensionality, Deep learning, Advanced clustering schemes, association rules, classification, decision trees, Big Data management, MapReduce, Hadoop, NoSQL, Web mining, Webgraph/directed graphs, pageRank, TrustRank, From Web2.0 to Web3.0: Semantic Web, Linked Data, Link Open Data Cloud, Uncertainty, Fuzziness, Fuzzy Sets, Citation analysis, Advanced knowledge management and representation issues 
Bibliography:
  1. Margaret H. Dunham, “Data mining”, Εκδόσεις Νέων Τεχνολογιών, ISBN: 960-8105-72-2, 2004
  2. Ronald Brachman, Hector Levesque, “Knowledge Representation and Reasoning”, The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann Publishers, ISBN: 978-1558609327, 2004 
 
Additional Material:
  • e-class

Log In

Create an account